VERIFIABILITY in electronic voting

Michael Clarkson George Washington University

International Summer School on Secure Voting July 16, 2012

Secret Ballot

"Flawless"

Security FAIL

Analysis of an electronic voting system. [Kohno, Stubblefield, Rubin, and Wallach 2004]

- DRE trusts smartcards
- Hardcoded keys and initialization vectors
- Weak message integrity
- Cryptographically insecure random number generator

California top-to-bottom reviews [Wagner et al. 2007]

- "Virtually every important software security mechanism is vulnerable to circumvention."
- "An attacker could subvert a single polling place device...then reprogram every polling place device in the county."
- "We could not find a single instance of correctly used cryptography that successfully accomplished the security purposes for which it was apparently intended."

Why is this so hard?

What to verify? What to keep private?

Why is this so hard?

Key differences: Adversarial models Fault detection and recovery [Schneier 2001, Adida 2006]

VERIFIABILITY in electronic voting

Michael Clarkson George Washington University

International Summer School on Secure Voting July 16, 2012 ACT I

Recorded as cast

Counted as recorded

Recorded as cast

Cast as intended

Verification Tasks

- Cast as intended
- Recorded as cast
- Counted as recorded

Formal Definitions of Counted-as-recorded VERIFIABILITY

Privacy?

Verifiability in Early Work

Definition: "Verifiability: Anyone can verify the correctness of the results."

Proof: "Verifiability holds assuming there is no collusion."

[Juels, Catalano, Jakobsson 2005]

Election protocol is verifiable if adversary cannot concoct a BB that verifies with an incorrect tally, even if given access to all secret keys.

BB: bulletin board

[Juels, Catalano, Jakobsson 2005]

tabulate: BB × k × {VK} \rightarrow tally × zkpf

[Juels, Catalano, Jakobsson 2005]

tabulate: BB × k × {VK} \rightarrow tally × zkpf verify: BB × K × {VK} × tally × zkpf \rightarrow boolean

[Juels, Catalano, Jakobsson 2005]

tabulate: $BB \times k \times \{VK\} \rightarrow tally \times zkpf$ verify: $BB \times K \times \{VK\} \times tally \times zkpf \rightarrow boolean$ fake-election: $k \times \{Vk\} \rightarrow BB \times tally \times zkpf$

[Juels, Catalano, Jakobsson 2005]

tabulate: $BB \times k \times \{VK\} \rightarrow tally \times zkpf$ verify: $BB \times K \times \{VK\} \times tally \times zkpf \rightarrow boolean$ fake-election: $k \times \{Vk\} \rightarrow BB \times tally \times zkpf$

(actually in computational model)
[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk})

[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk}) and (tally, zkpf) = tabulate(BB, k, {VK}).

[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk}) and (tally, zkpf) = tabulate(BB, k, {VK}).

If verify(BB, K, {VK}, ftally, fzkpf),

[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk}) and (tally, zkpf) = tabulate(BB, k, {VK}).

If verify(BB, K, {VK}, ftally, fzkpf),
then ftally = tally.

[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk}) and (tally, zkpf) = tabulate(BB, k, {VK}).

If verify(BB, K, {VK}, ftally, fzkpf), then ftally = tally. (prob. of inequality is neg.)

[Juels, Catalano, Jakobsson 2005]

Let (BB, ftally, fzkpf) = fake-election(k, {Vk}) and (tally, zkpf) = tabulate(BB, k, {VK}).

If verify(BB, K, {VK}, ftally, fzkpf), then ftally = tally. (prob. of inequality is neg.)

...purely about "counted as recorded"

[Kremer, Ryan, Smyth 2010]

IV(vote, cred, ballot, privstate) : boolean

[Kremer, Ryan, Smyth 2010]

IV(vote, cred, ballot, privstate) : boolean UV(votes, ballots, pfs) : boolean

[Kremer, Ryan, Smyth 2010]

IV(vote, cred, ballot, privstate) : boolean UV(votes, ballots, pfs) : boolean

(actually in symbolic model)

[Kremer, Ryan, Smyth 2010]

I. If IV(vote1, cred, ballot, privstate1) and IV(vote2, cred, ballot, privstate2) then vote1=vote2 and privstate1=privstate2

[Kremer, Ryan, Smyth 2010]

I. If IV(vote I, cred, ballot, privstate I)
and IV(vote2, cred, ballot, privstate2)
then vote I = vote2
and privstate I = privstate2

... no ballot on BB can verify as more than one vote

[Kremer, Ryan, Smyth 2010]

2. If UV(votes, ballots, pfs) and UV(votes', ballots, pfs) then votes=votes'.

[Kremer, Ryan, Smyth 2010]

2. If UV(votes, ballots, pfs) and UV(votes', ballots, pfs) then votes=votes'.

...ballots on BB can verify only as one set of votes

[Kremer, Ryan, Smyth 2010]

3. If for all i, IV(vote[i], cred[i], ballot[i], privstate[i]) and UV(votes, ballots, pfs) and ballots = [ballot[i] | i], then votes = [vote[i] | i].

[Kremer, Ryan, Smyth 2010]

3. If for all i, IV(vote[i], cred[i], ballot[i], privstate[i]) and UV(votes, ballots, pfs) and ballots = [ballot[i] | i], then votes = [vote[i] | i].

...ballots on BB really do contain votes expected by voters

[Kremer, Ryan, Smyth 2010]

[Kremer, Ryan, Smyth 2010]

EV(creds, ballots, pfs) : boolean

[Kremer, Ryan, Smyth 2010]

EV(creds, ballots, pfs) : boolean

Three more conditions to formalize that EV holds only if all votes are authorized

Accountability

[Küsters, Truderung, Vogt 2010]

Need to assign blame when protocol run fails to verify.

- Fairness: Judge never blames protocol participants who run their honest program.
- Completeness: If misbehavior of participants causes protocol goal to fail, judge blames some subset of those participants.

 $!G \Rightarrow \mathbf{v}_1 \mid \mathbf{v}_2 \mid ... \mid \mathbf{v}_n$

G is goal, a set of protocol traces v is verdict, which assigns blame to subset

verdict could be... $dis(A) | dis(V_1) | dis(V_2)$ $dis(A) \vee dis(V_1) \vee dis(V_2)$ $dis(A) \mid dis(V_1) \land dis(V_2)$

Generalizes a definition of verifiability

Accountability... Verifiability [Küsters, Truderung, Vogt 2010]

- Adequacy: If some subset of participants are honest in a run, judge accepts run.
- Soundness: If judge accepts a run, then run satisfies protocol goal.

Accountability...

Verifiability [Küsters, Truderung, Vogt 2010]

$h \Rightarrow G$

h is honesty constraint G is goal

Accountability... Verifiability [Küsters, Truderung, Vogt 2010]

 $\begin{array}{ll} \text{honesty contraint} & \text{hon}(A) \lor \text{hon}(V_1) \lor \text{hon}(V_2) \\ \text{could be...} & \text{hon}(A) \lor (\text{hon}(V_1) \land \text{hon}(V_2)) \end{array}$

honesty contraints are negations of (class of) verdicts, where hon(A) = !dis(A)

Verifiability vs. Accountability

[Küsters, Truderung, Vogt 2010]

If judge provides $!G \Rightarrow !h$ accountability, then judge provides $h \Rightarrow G$ verifiability.

Verifiability vs. Accountability

[Küsters, Truderung, Vogt 2010]

If judge provides $!G \Rightarrow !h$ accountability, then judge provides $h \Rightarrow G$ verifiability.

(converse holds with additional restrictions)

Verifiability vs. Accountability

[Küsters, Truderung, Vogt 2010]

If judge provides $!G \Rightarrow !h$ accountability, then judge provides $h \Rightarrow G$ verifiability.

(converse holds with additional restrictions)

...accountability generalizes verifiability

Verifiability Verified

- Juels et al.: JCJ, Civitas
- Kremer et al.: FOO'92, Helios 2.0, Civitas
- Küsters et al.: Bingo, ThreeBallot, VAV, Wombat, Helios 2.0

VERIFIABILITY in electronic voting

Michael Clarkson George Washington University

International Summer School on Secure Voting July 16, 2012 ACT II

Verification Tasks

- Cast as intended
- Recorded as cast
- Counted as recorded

Recorded as Intended

- Two-part ballots [Chaum 2004]
- Cast NAND audit [Benaloh 2006]
- Proofs for people [Neff 2004]

Visual cryptography [Naor and Shamir 1994]

elaborated into non-visual form by Ryan (2004); idea now a basis for Preter & take disperive cy-presented ayechonic. and Scantegrity

Cast NAND Audit [Benaloh 2006]

Used in Helios 1.0, 2.0 [Adida] and VoteBox [Sander, Derr, and Wallach 2008]

Used in VoteHere (Neff)

Problem: people must trust machines

Problem: people must trust machines

Repetition establishes truth without revealing secret

Repetition establishes truth without revealing secret

Repetition establishes truth without revealing secret

Ron

Ron

Ron: enc(1) Draco: enc(0)

Verification Tasks

- Cast as intended
- Recorded as cast
- Counted as recorded

Accomplishments

- Voting machine learns vote
- Voting machine doesn't learn voter identity
- Voter is convinced of correctness of encryption
- Machine doesn't have to be trusted

Accomplishments

- Voting machine learns vote
- Voting machine doesn't learn voter identity
- Voter is convinced of correctness of encryption
- Machine doesn't have to be trusted

(voter can't be coerced or sell vote)

VERIFIABILITY in electronic voting

- Formal definitions
- Counted as recorded
- Recorded as intended

VERIFIABILITY in electronic voting

Michael Clarkson George Washington University

International Summer School on Secure Voting July 16, 2012