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2003 Analysis of Diebold AccuVote TS
Leaked source code analyzed [Kohno et al. 2004]
Poor software engineering, incorrect cryptography, 
vulnerable to malicious upgrades, multiple voting

2006 “Voting-machine virus” developed
Self-propagating malicious upgrades that spread from 
machine to machine, altering votes and leaving no trace 
[Feldman et al. 2006]
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Software bugs & design flaws 
identified by e-voting researchers
2007 Involvement by computer scientists 
in statewide voting systems audits

groundbreaking access to source code of commercial 
voting systems

Top-To-Bottom Review (California)
‣All machines certified for use in CA found to have 

serious bugs & be vulnerable to attack
‣Viral-style attacks found in all systems

EVEREST study (Ohio)
‣All machines certified in OH found vulnerable 

(validating CA-TTBR)
‣Showed that hundreds of votes were lost in 2004

DREs discredited



Result:
undermined trust 
in elections
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design a 
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1.	resistance to failure & tampering
essential vote data should survive 
hardware failure, poll worker mistakes, 
attempts to attack the system

goals



2.	tamper-evidence
if we are unable to prevent data loss, 
we must always be able to detect the 
failure

goals



3.	verifiability
two useful properties:
cast-as-intended

“Was my vote recorded faithfully?”
very, very hard for DREs to satisfy

counted-as-cast
“Has my vote been tallied correctly?”
can be somewhat addressed with recounts

goals



resistance to failure & tampering
prevent or minimize data loss
tamper-evidence
if resistance is futile
verifiability
cast-as-intended; counted-as-cast
DRE user experience
smaller codebase

goals
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replication; gossip
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DRE user experience
smaller codebase
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Ballot challenge

PRUI
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Auditorium’s approach
Store everything everywhere
Massive redundancy
Stop trusting DREs to keep their own audit data

Link all votes, events together
Create a secure timeline of election events
Tamper-evident proof of each vote’s legitimacy

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings 
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/
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Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of 
a previous event
Result: provable order
If Y includes H(X), then Y must have happened after X
Any attempted change to the log
invalidates all later hashes (breaks the chain)
To alter, insert, or delete a single record
you must alter every subsequent event as well!

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]
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Ingredient: timeline entanglement
Entanglement = “chain 
with hashes from others”
Result: event ordering 
between participants

Malicious machines can’t retroactively 
alter their own logs
it would violate commitments they have 
already exchanged with others

[Maniatis & Baker ’02]

So with whom should a VoteBox entangle?
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Ingredient: broadcast
All-to-all communication
All messages signed & distributed to every VoteBox
Each machine records each message independently

result: massive replication
O(N2), but N is small in a polling place

Mechanism for entanglement
each log fills up with local and remote messages
when sending new messages, include recent hashes 
(regardless of origin)



Broadcast entanglement = 
Auditorium



The Papal Conclave
Proceedings closed to outsiders
All ballots cast in plain view 
All ballots secret

Unusual prior art
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The supervisor console
Assistance for poll workers
Helps conduct the election
Open/close polls, authorize machines to 
cast ballots
Less opportunity for poll-worker error
Ballots distributed over the network
Booths are stateless, interchangeable
(Supervisor can have a spare as well)
Shows status of all machines
Votes cast, battery running low, etc.

A pragmatic benefit
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Where is that program?
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QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
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How do you audit a secure log?

D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the evidence in 
tamper-evident logs. In Proceedings of the 3rd International Workshop on 
Systematic Approaches to Digital Forensic Engineering (SADFE’08).

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search
Querifier runs on a complete log (“OK” / “Violation”)
or iteratively on a growing log (“OK so far” / “Violation”) 

“Audit logs are useless unless someone reads them. Hence, 
we first assume that there is a software program whose job it 
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

http://conf.ncku.edu.tw/sadfe/sadfe08/
http://conf.ncku.edu.tw/sadfe/sadfe08/
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Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*
Anonymity through clever ballot ordering
re-encryption mixnets
lexicographic sorting
These would still require the ballots to be removed 
from the ordered audit logs



Ballots in VoteBox



Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate



Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:
! ! ballot  =  (a, b, c)                         a, b, c  ∈  { 0, 1 }



Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:
! ! ballot  =  (a, b, c)                         a, b, c  ∈  { 0, 1 }

ballots may therefore be summed
! ! tally  =  ∑ balloti  =  (∑ ai , ∑ bi , ∑ ci) 



Encryption



Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties 
trusted to count them



Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties 
trusted to count them
But how do we count them?
Remember, we don’t want to decrypt them in order



Diffie-Hellman (1976)
Alice : random a 2 Z⇤

p

Bob : random b 2 Z⇤
p

Public : generator g 2 Z⇤
p

A ! B : g

a

B ! A : g

b

Alice : computes (gb)a = g

ab

Bob : computes (ga)b = g

ab

Eve : knows g

a,gb,cannot compute g

ab



Elgamal encryption (1984)
Non-deterministic cryptosystem (different r every time)

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key 
ga	
 (public) encryption key

E(ga,r,M) = hgr,(ga)rMi

D(gr,garM) =
garM
(gr)a

= M



Homomorphic property
Anybody can combine two ciphertexts to get a new one.

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key 
ga	
 (public) encryption key

E(M1)�E(M2) = < gr1 ,(ga)r1M1 >�< gr2 ,(ga)r2M2 >

= < gr1 gr2 ,(ga)r1M1(ga)r2M2 >

= gr1+r2 ,ga(r1+r2)M1M2

= E(M1M2)



Homomorphic vote tallying
Change messages to counters, additive in exponent of g.

“Exponential Elgamal”

g	
 group generator
v	
 plaintext (counters)
r	
 random (chosen at encryption time)
a	
 (private) decryption key 
ga	
 (public) encryption key

E(v1)�E(v2) = < gr1 ,(ga)r1gv1 >�< gr2 ,(ga)r2gv2 >

= < gr1+r2 ,ga(r1+r2)gv1+v2 >

= E(v1 + v2)



How can I be sure my 
vote is faithfully captured 
by the voting machine?
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this doesn’t work:

“logic &
 accuracy testing”
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ballot challenge
a technique due to [Benaloh ’07]

at the end, instead of casting your ballot:
force the machine to show it to you
this happens on election day
no artificial testing conditions (viz., “L&A tests”)
the voting machine cannot distinguish this from a real 
vote until the challenge
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ballot challenge

voter makes 
selections

voting machine commits 
irrevocably to

the ballot to be cast

confirmed
(ballot is cast)

show commitment
(ballot is spoiled)

voter’s
choice

“cast” “challenge”
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What is the commitment?
How do we force the machine to produce proof of what 
it’s about to cast on the voter’s behalf?
Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot
How do you test the commitment?
Decrypt it.
But decryption requires the private key for tabulating the 
whole election!

ballot commitment



Elgamal reminder
Two ways to decrypt:

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key 
	
 (public) encryption keyga

E(ga,r,M) = hgr,(ga)rMi

D(gr,garM,a) =
garM
(gr)a

D(gr,garM,r) =
garM
(ga)r

= M
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When challenged, the machine must reveal r
We can then decrypt this ballot (only) and see if it’s 
what we expected to see
In Benaloh, the encrypted ballot is on paper
An irrevocable output medium
decrypting requires additional equipment
VoteBox happens to have its own irrevocable 
publishing system
One that doesn’t run out of ink or paper
Auditorium.

challenging the machine



polling place



polling place

voter



polling place

voter

commit 
ballot



polling place

voter

commit 
ballot

cast 
ballot



polling place



polling place

challenger



polling place

challengerobservers



polling place

challengerobservers

commit 
ballot



polling place

challengerobservers

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

I
N

T
E

R
N

E
T

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

internet
device

challenge
verification

results

commit 
ballot

challenge 
response



polling place

challengerobservers

“data
    diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

internet
device

challenge
verification

results

ALICE

commit 
ballot

challenge 
response



Challenges in Auditorium



Challenges in Auditorium
When challenged,



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even 
given r



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even 
given r
If we are careful, we can send challenges offsite



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even 
given r
If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even 
given r
If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge
Trusted by the challenger!
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Ballot challenges:
cast-as-intended verification
preserving privacy



Ballot challenges:
cast-as-intended verification
preserving privacy
without artificial test conditions.
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pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?
windowing system; widgets; fonts & text rendering
result
less code to inspect, certify, and trust
inspiration: Pvote
pioneering work on PRUI in e-voting
[Yee, EVT ’06 & ’07]







GUI tool for creating pre-rendered ballots
this is where the complexity went

VoteBox ballot creator

Not in the TCB
we don’t need to trust this 
software
sufficient to verify that the 
output ballot is correct
Flexibility
New ballot designs do not 
require changes to VoteBox
—only the ballot creator
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HCI research
VoteBox is a platform for human 
factors research & experimentation
VoteBox’s ballot designed jointly with 
Rice CHIL
special VoteBox-HF build includes 
extensive instrumentation for HCI work
Questions answered include:
“Do users prefer DREs?”
“Do DREs improve performance?”
“Do voters notice if DREs malfunction?”
Software engineering implications
Instrumentation is “evil” code from a 
security standpoint
Compile-time processing to exclude all 
HCI code from normal VoteBox builds



Extensions.

skip



internet voting
from home is
a bad idea



remote voting
can be
a good idea



“postal voting”
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“postal voting”
ALICE

BOB

CHUCKX

ALICE

BOB

CHUCKX

VOTER

SIGNATURE

Daniel R. Sandler

XDRSandler



we can do this with VoteBox

	 Conventional:	 postal system 
	 Replace with:	 Auditorium network

	 Conventional:	 sealed envelopes 
	 Replace with:	 encryption
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ALICE

BOB

CHUCKX
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ALICE
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CHUCKX
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Fast
Ballot types from home precinct
Cast ballots back to home precinct
Robust
Post and networks both lossy
…but networks can retransmit

More secure
Choices cannot be observed while in transit
Crypto protects vote secrecy (even from officials)

Benefits of the networked 
remote polling place



3. Conclusion



why?



lots of research on 
individual pieces
of the e-voting problem



VoteBox integrates 
these techniques in a 
single system.
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VoteBox integrates 
these techniques in a 
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable 
electronic voting system. In USENIX Security 2008.

Other ingredients
PRUI; HCI instrumentation

Techniques suitable for integration with today’s systems

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
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http://blog.wired.com/27bstroke6/2009/01/diebold-audit-l.html



http://blog.wired.com/27bstroke6/2009/01/diebold-audit-l.html
http://blog.wired.com/27bstroke6/2009/03/ca-report-finds.html



platform
VoteBox is open-source
votebox.cs.rice.edu & code.google.com/p/votebox
suitable for further research, HCI experiments, class 
projects, security analysis



thanks
co-authors
Scott Crosby, Kyle Derr, Daniel Sandler, 
Ted Torous

contributors to VoteBox
Emily Fortuna, George Mastrogiannis,
Kevin Montrose, Corey Shaw

CHIL
Mike Byrne, Sarah Everett, Kristen Greene
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Alice

Bob

V O T E B O X

VoteBox is an ACCURATE research project 
exploring designs for new e-voting systems 
that are trustworthy, reliable, and usable.

voters enjoy a 
familiar and 
interactive 

e-voting user 
experience

auditors can use 
these logs to confirm 

the validity and 
integrity of ballots

VoteBox records secure, 
tamper-evident logs with 

redundancy to survive failures 
and accidental deletion

POWER ON

POLLS OPEN

BALLOT CAST

BALLOT CAST

BALLOT CAST

anyone may challenge 

a VoteBox to produce 
verifiable proof of 
correct behavior

(with the assistance of 
a third-party proof 

verifier of his choice)

ALICE

CRYPTOGRAPHIC PROOFS

RESULTS

?

ONE WAY

DECRYPTING
VERIFYING

on the web: accurate-voting.org & votebox.cs.rice.edu

NSF “highlights” graphic, 2009



Alice

Bob

E – V O T E

missing or
incorrect use of

cryptography

poor software
engineering practices

voting
machine
viruses

possible
malfunctions
can destroy

or reveal
ballots

Alice

Bob

comprehensive audits
in California and Ohio

ACCURATE center researchers have participated in studies finding 
serious flaws in current commercial DRE voting systems that make them 
vulnerable to malfunctions or deliberate manipulation by attackers.

electronic voting in peril
NSF “highlights” graphic, 2009





(assorted backup slides)



Beyond.



Beyond VoteBox
Other systems need assurance, auditability, 
transparency
Future directions
email (auditability, document retention)
web 2.0 publishing (reliability, openness)
collaborative tools (event ordering, change tracking)
gaming (ordering, cheat resistance & audit)



email
entangled mailboxes
apply the tamper-evidence and timeline properties of 
auditorium to email records that must be highly 
auditable and recoverable
applications
Sarbanes-Oxley compliance
patents/notarization
Presidential records

status: planning



micropublishing
rapid short messaging
e.g. Twitter, Facebook
opt-in/social subscription
current systems are 
centralized, isolated, and 
limited
research opportunity
distributed, secure 
micropublishing
Auditorium-style timeline 
entanglement
scaling to millions of users (data from Twitter, collected 2008)

continued…



micropublishing (2)
FETHR
micropublishing API
updates pushed to 
subscribers via HTTP POST
entanglement between 
publishers
gossip to assist in message 
distribution
prototype implementation: 
Birdfeeder (brdfdr.com)

status: in progress; submitted 
(IPTPS)

FETHR address:
http://example.com/alice

alice

FETHR address:
http://another.example.net/bob

bob

POST /bob/subscribe
id=http://example.com/alice

GET /bob/profile

(a)

alice

chuck

diane

bob

POST /alice/push

POST /chuck/push

POST /diane/push

POST /alice/push

POST /diane/push

(b)

bob

?

(c)



collaborative tools
timeline entanglement to represent sequence of 
edits or actions
ordering of events corresponds neatly to causality in 
groupware
status: prototyped



networked games
Auditorium-style communication for participants
gossip for decentralization, reliability
hash chains forward & backward (move commitment, 
history authentication)
secure logs for post-facto audit of suspected cheating



Fancy Cryptography



Violation of encryption 
semantics?

M1 M2 E(M1)�E(M2) = E(M1M2)If I know      and       and
then I can find other messages where
I know their encryption!



Solution: Padding
Optimal Asymmetric Encryption Padding (OAEP) - 

Belare and Rogaway (1995)

m - message (plaintext)

r - random number

G, H - cryptographic hash 
functions

X, Y - the message that gets 
encrypted



Cool trick: reencryption

E(M)�E(0) = E(M)⇤
Anybody can “reencrypt” a message.

(New random number introduced from E(0).)



Reencryption mixnets
Permutations     , where output is reencrypted.Pi

P0 P1 P2

Each mix permutes/reencrypts.
Must prove output corresponds to input. 



Non-solution: reveal the mix
Publish the random numbers and the permutation.

P0

Eliminates benefit of randomization.



Randomized partial checking
Effective across larger mixes.

P0

(Jakobsson, Jules, Rivest ’02)

P1 P2

Say we’re mixing 1 million ballots, each mix reveals 1%. After five 
mixes, 99.99% chance that all ballots reencrypted at least once.



Zero-knowledge proofs (ZKP)
want to prove you know something
while revealing nothing
generalized format
prover: commit to something (e.g., reencryption mix 
output)
verifier: challenge the prover
prover: respond to the challenge



Example: Hamiltonian paths
Prover: “I know a HP over 
graph G.” Compute graph 
isomorphism H. Publish G, 
H.
Verifier: Coin toss.  Heads: 
tell me HP over H.  Tails: tell 
me isomorphism G to H.

(Repeat N times.)

If prover doesn’t know HP, 
verifier catches with high 
probability.



Non-interactive ZK proofs
Prover: Precompute N 
isomorphisms (H1 to HN) and 
hash them.  Hash function 
yields coin tosses for virtual 
challenger.  Then output the 
results.

(Assumes good hash 
functions.)

This is an example of the 
Fiat-Shamir heuristic (1986).



NIZK variant for mixes
Hash the output of the permutation/reencryption.  Use 
those bits to select which edges get revealed.

P0

Say we’re mixing 1 million ballots, each mix reveals 
1%. After five mixes, 99.99% chance that all ballots 
reencrypted at least once.

P1 P2



Evil machine: E(bignum)?
Must prove ciphertext corresponds to well-formed 
plaintext.  (Example, prove counters are zero or one.)

We need another ZK tool: Chaum-Pedersen proofs.

Prover knows:
Wants to prove that these two tuples share x

(g,gx),(h,hx)



Chaum-Pedersen proofs 
(1992)
Goal: demonstrate
P: choose random             , compute 
    Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute 
    send R to V
V: Compute

w 2 Z⇤
p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)
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Goal: demonstrate
P: choose random             , compute 
    Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute 
    send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

P choses fake c, R: then                     .

ZK protocols only work when “live” (or use Fiat-
Shamir heuristic for non-interactive)

Observer can compute          ...A(gx)c

A = g

R(gxc)�1



C-P for vote testing
Can I prove a vote is zero or one?  First, how about 
proving it’s zero using C-P.

Want to verify                  for a specific value of v?
Do C-P protocol where                      becomes

We could do this for any value of v

Challenge is to do v = 0 and v = 1 at the same time.

(g,gx),(h,hx)

(g,gr),
✓

ga,
gargv

gv

◆

hgr,gargvi



Cramer-Damgård-
Schoenmakers (1996)
Can run two Chaum-Pedersen (or any two ZK proofs 
like this) simultaneously, one “real” and one “simulated”.

First, fake a proof (e.g., for v = 1) in advance.

Then, announce the first message for both protocols.  
Challenger sends c, prover announced a split 
where                   , then executes both ZK protocols.

Verifier cannot tell which one was real vs. simulated, but 
knows that one of them was real.

c0,c1

c0 + c1 = c



Crypto summary
At the end of the day, any election observer can now:
- verify every single ballot for being “well-formed”

(valid Elgamal tuple, encrypted zero-or-one, etc.)
- add together all the ballots (homomorphically)
- verify a proof of the tally (Chaum-Pedersen again)

(only the election authority can generate this)

But we have no idea if the original ciphertext 
corresponded to the intent of the voter (versus evil 
machine flipping votes).


