

VoteBox:
a verifiable, tamper-evident
electronic voting system

Dan S. Wallach
Rice University

(Joint work with Daniel R. Sandler)

Talk outline

Talk outline
I. Background

Trustworthiness of electronic voting machines
Why it’s worth improving them
Related work

Talk outline
I. Background

Trustworthiness of electronic voting machines
Why it’s worth improving them
Related work

II. The design of VoteBox
Durability and audit
Privacy and verifiability
User interface
Extensions

Talk outline
I. Background

Trustworthiness of electronic voting machines
Why it’s worth improving them
Related work

II. The design of VoteBox
Durability and audit
Privacy and verifiability
User interface
Extensions

III.Conclusion

1. Background

DRE voting machines
(Direct Recording Electronic)

DRE voting machines
(Direct Recording Electronic)

touch screen / buttons
graphical display

DRE voting machines
(Direct Recording Electronic)

touch screen / buttons
graphical display

flash memory

Software bugs & design flaws
identified by e-voting researchers

DREs discredited

Software bugs & design flaws
identified by e-voting researchers

2003 Analysis of Diebold AccuVote TS
Leaked source code analyzed [Kohno et al. 2004]
Poor software engineering, incorrect cryptography,
vulnerable to malicious upgrades, multiple voting

DREs discredited

Software bugs & design flaws
identified by e-voting researchers

2003 Analysis of Diebold AccuVote TS
Leaked source code analyzed [Kohno et al. 2004]
Poor software engineering, incorrect cryptography,
vulnerable to malicious upgrades, multiple voting

2006 “Voting-machine virus” developed
Self-propagating malicious upgrades that spread from
machine to machine, altering votes and leaving no trace
[Feldman et al. 2006]

DREs discredited

Software bugs & design flaws
identified by e-voting researchers

DREs discredited

Software bugs & design flaws
identified by e-voting researchers
2007 Involvement by computer scientists
in statewide voting systems audits

groundbreaking access to source code of commercial
voting systems

DREs discredited

Software bugs & design flaws
identified by e-voting researchers
2007 Involvement by computer scientists
in statewide voting systems audits

groundbreaking access to source code of commercial
voting systems

Top-To-Bottom Review (California)
‣All machines certified for use in CA found to have

serious bugs & be vulnerable to attack
‣Viral-style attacks found in all systems

DREs discredited

Software bugs & design flaws
identified by e-voting researchers
2007 Involvement by computer scientists
in statewide voting systems audits

groundbreaking access to source code of commercial
voting systems

Top-To-Bottom Review (California)
‣All machines certified for use in CA found to have

serious bugs & be vulnerable to attack
‣Viral-style attacks found in all systems

EVEREST study (Ohio)
‣All machines certified in OH found vulnerable

(validating CA-TTBR)
‣Showed that hundreds of votes were lost in 2004

DREs discredited

Result:
undermined trust
in elections

?

voters
prefer
electronic
voting

voters
prefer
electronic
voting
S. P. Everett, K. K. Greene, M. D. Byrne, D. S. Wallach, K. Derr, D. R. Sandler, and T. Torous.
Electronic voting machines versus traditional methods: Improved preference, similar performance.
In CHI 2008.

voters
prefer
electronic
voting
S. P. Everett, K. K. Greene, M. D. Byrne, D. S. Wallach, K. Derr, D. R. Sandler, and T. Torous.
Electronic voting machines versus traditional methods: Improved preference, similar performance.
In CHI 2008.

legitimate benefits

legitimate benefits
accessibility

legitimate benefits
accessibility
feedback

legitimate benefits
accessibility
feedback
flexibility

legitimate benefits
accessibility
feedback
flexibility
satisfaction

can we
design a
better DRE?

can we
design a
better DRE?

“better” = ?

1.	resistance to failure & tampering
essential vote data should survive
hardware failure, poll worker mistakes,
attempts to attack the system

goals

2.	tamper-evidence
if we are unable to prevent data loss,
we must always be able to detect the
failure

goals

3.	verifiability
two useful properties:
cast-as-intended

“Was my vote recorded faithfully?”
very, very hard for DREs to satisfy

counted-as-cast
“Has my vote been tallied correctly?”
can be somewhat addressed with recounts

goals

resistance to failure & tampering
prevent or minimize data loss
tamper-evidence
if resistance is futile
verifiability
cast-as-intended; counted-as-cast
DRE user experience
smaller codebase

goals

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

Auditorium

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

Auditorium

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

Auditorium

Ballot challenge

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

Auditorium

Ballot challenge

a computer science problem

resistance to failure & tampering
replication; gossip
tamper-evidence
secure logs
verifiability
cryptography
DRE user experience
smaller codebase

Auditorium

Ballot challenge

PRUI

Mixnets
Chaum ’81
Neff ’01
Chaum ’04 (visual crypto)
Prêt-à-voter: Chaum, Ryan,
Schneider ’05
Blind signatures
FOO: Fujioka, Okamoto, Ohta ’92
EVOX: Herschberg ’97
Sensus: Cranor, Cytron ’97
Storage
Molnar, Kohno, Sastry, Wagner ’06
Bethencourt, Boneh, Waters ’07

Homomorphic crypto and NIZKs
Benaloh ’87
Adder: Kiayias, Korman, Walluck ’06
Moran, Naor ’06
Benaloh ’07
Helios: Adida ’08
Civitas: Clarkson, Chong, Myers ’08
TCB reduction
Pvote: Yee ’06, ’07
Sastry, Kohno, Wagner ’06
Paper
Punchscan: Chaum ’05
ThreeBallot: Rivest ’06
Scantegrity: Chaum ’07

other research voting systems

Mixnets
Chaum ’81
Neff ’01
Chaum ’04 (visual crypto)
Prêt-à-voter: Chaum, Ryan,
Schneider ’05
Blind signatures
FOO: Fujioka, Okamoto, Ohta ’92
EVOX: Herschberg ’97
Sensus: Cranor, Cytron ’97
Storage
Molnar, Kohno, Sastry, Wagner ’06
Bethencourt, Boneh, Waters ’07

Homomorphic crypto and NIZKs
Benaloh ’87
Adder: Kiayias, Korman, Walluck ’06
Moran, Naor ’06
Benaloh ’07
Helios: Adida ’08
Civitas: Clarkson, Chong, Myers ’08
TCB reduction
Pvote: Yee ’06, ’07
Sastry, Kohno, Wagner ’06
Paper
Punchscan: Chaum ’05
ThreeBallot: Rivest ’06
Scantegrity: Chaum ’07

other research voting systems

“The Auditorium”

“The Auditorium”“The Auditorium”

Auditorium’s approach

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/

Auditorium’s approach
Store everything everywhere
Massive redundancy
Stop trusting DREs to keep their own audit data

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/

Auditorium’s approach
Store everything everywhere
Massive redundancy
Stop trusting DREs to keep their own audit data

Link all votes, events together
Create a secure timeline of election events
Tamper-evident proof of each vote’s legitimacy

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/

Ingredient: hash chains
“Machine turned on” (HASH = 0x1234)

“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of
a previous event

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]

Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of
a previous event
Result: provable order
If Y includes H(X), then Y must have happened after X

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]

Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of
a previous event
Result: provable order
If Y includes H(X), then Y must have happened after X
Any attempted change to the log
invalidates all later hashes (breaks the chain)

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]

Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of
a previous event
Result: provable order
If Y includes H(X), then Y must have happened after X
Any attempted change to the log
invalidates all later hashes (breaks the chain)
To alter, insert, or delete a single record
you must alter every subsequent event as well!

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]

Ingredient: timeline entanglement

Ingredient: timeline entanglement
Entanglement = “chain
with hashes from others”
Result: event ordering
between participants
[Maniatis & Baker ’02]

Ingredient: timeline entanglement
Entanglement = “chain
with hashes from others”
Result: event ordering
between participants

Malicious machines can’t retroactively
alter their own logs
it would violate commitments they have
already exchanged with others

[Maniatis & Baker ’02]

Ingredient: timeline entanglement
Entanglement = “chain
with hashes from others”
Result: event ordering
between participants

Malicious machines can’t retroactively
alter their own logs
it would violate commitments they have
already exchanged with others

[Maniatis & Baker ’02]

So with whom should a VoteBox entangle?

Ingredient: broadcast

Ingredient: broadcast
All-to-all communication
All messages signed & distributed to every VoteBox
Each machine records each message independently

Ingredient: broadcast
All-to-all communication
All messages signed & distributed to every VoteBox
Each machine records each message independently

result: massive replication
O(N2), but N is small in a polling place

Ingredient: broadcast
All-to-all communication
All messages signed & distributed to every VoteBox
Each machine records each message independently

result: massive replication
O(N2), but N is small in a polling place

Mechanism for entanglement
each log fills up with local and remote messages
when sending new messages, include recent hashes
(regardless of origin)

Broadcast entanglement =
Auditorium

The Papal Conclave
Proceedings closed to outsiders
All ballots cast in plain view
All ballots secret

Unusual prior art

A pragmatic benefit

The supervisor console
Assistance for poll workers

A pragmatic benefit

The supervisor console
Assistance for poll workers
Helps conduct the election
Open/close polls, authorize machines to
cast ballots
Less opportunity for poll-worker error

A pragmatic benefit

The supervisor console
Assistance for poll workers
Helps conduct the election
Open/close polls, authorize machines to
cast ballots
Less opportunity for poll-worker error
Ballots distributed over the network
Booths are stateless, interchangeable
(Supervisor can have a spare as well)

A pragmatic benefit

The supervisor console
Assistance for poll workers
Helps conduct the election
Open/close polls, authorize machines to
cast ballots
Less opportunity for poll-worker error
Ballots distributed over the network
Booths are stateless, interchangeable
(Supervisor can have a spare as well)
Shows status of all machines
Votes cast, battery running low, etc.

A pragmatic benefit

How do you audit a secure log?

How do you audit a secure log?
“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?
“suspicious” is domain-specific

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search
Querifier runs on a complete log (“OK” / “Violation”)

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

How do you audit a secure log?

D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the evidence in
tamper-evident logs. In Proceedings of the 3rd International Workshop on
Systematic Approaches to Digital Forensic Engineering (SADFE’08).

Where is that program?
“suspicious” is domain-specific
QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search
Querifier runs on a complete log (“OK” / “Violation”)
or iteratively on a growing log (“OK so far” / “Violation”)

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

http://conf.ncku.edu.tw/sadfe/sadfe08/
http://conf.ncku.edu.tw/sadfe/sadfe08/

Ballots.

Privacy

Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*

Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*
Anonymity through clever ballot ordering
re-encryption mixnets
lexicographic sorting

Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*
Anonymity through clever ballot ordering
re-encryption mixnets
lexicographic sorting
These would still require the ballots to be removed
from the ordered audit logs

Ballots in VoteBox

Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:
! ! ballot = (a, b, c) a, b, c ∈ { 0, 1 }

Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:
! ! ballot = (a, b, c) a, b, c ∈ { 0, 1 }

ballots may therefore be summed
! ! tally = ∑ balloti = (∑ ai , ∑ bi , ∑ ci)

Encryption

Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties
trusted to count them

Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties
trusted to count them
But how do we count them?
Remember, we don’t want to decrypt them in order

Diffie-Hellman (1976)
Alice : random a 2 Z⇤

p

Bob : random b 2 Z⇤
p

Public : generator g 2 Z⇤
p

A ! B : g

a

B ! A : g

b

Alice : computes (gb)a = g

ab

Bob : computes (ga)b = g

ab

Eve : knows g

a,gb,cannot compute g

ab

Elgamal encryption (1984)
Non-deterministic cryptosystem (different r every time)

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key
ga	
 (public) encryption key

E(ga,r,M) = hgr,(ga)rMi

D(gr,garM) =
garM
(gr)a

= M

Homomorphic property
Anybody can combine two ciphertexts to get a new one.

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key
ga	
 (public) encryption key

E(M1)�E(M2) = < gr1 ,(ga)r1M1 >�< gr2 ,(ga)r2M2 >

= < gr1 gr2 ,(ga)r1M1(ga)r2M2 >

= gr1+r2 ,ga(r1+r2)M1M2

= E(M1M2)

Homomorphic vote tallying
Change messages to counters, additive in exponent of g.

“Exponential Elgamal”

g	
 group generator
v	
 plaintext (counters)
r	
 random (chosen at encryption time)
a	
 (private) decryption key
ga	
 (public) encryption key

E(v1)�E(v2) = < gr1 ,(ga)r1gv1 >�< gr2 ,(ga)r2gv2 >

= < gr1+r2 ,ga(r1+r2)gv1+v2 >

= E(v1 + v2)

How can I be sure my
vote is faithfully captured
by the voting machine?

polling place

polling place

polling place

ALICE

polling place

ALICE

polling place

ALICE

BOB

polling place

ALICE

BOB

this doesn’t work:

“logic &
 accuracy testing”

VoteBox’s approach:

ballot challenge

ballot challenge

ballot challenge
a technique due to [Benaloh ’07]

ballot challenge
a technique due to [Benaloh ’07]

at the end, instead of casting your ballot:
force the machine to show it to you

ballot challenge
a technique due to [Benaloh ’07]

at the end, instead of casting your ballot:
force the machine to show it to you
this happens on election day
no artificial testing conditions (viz., “L&A tests”)
the voting machine cannot distinguish this from a real
vote until the challenge

ballot challenge

ballot challenge

voter makes
selections

ballot challenge

voter makes
selections

voting machine commits
irrevocably to

the ballot to be cast

ballot challenge

voter makes
selections

voting machine commits
irrevocably to

the ballot to be cast

voter’s
choice

“cast” “challenge”

ballot challenge

voter makes
selections

voting machine commits
irrevocably to

the ballot to be cast

confirmed
(ballot is cast)

voter’s
choice

“cast” “challenge”

ballot challenge

voter makes
selections

voting machine commits
irrevocably to

the ballot to be cast

confirmed
(ballot is cast)

show commitment
(ballot is spoiled)

voter’s
choice

“cast” “challenge”

ballot commitment

What is the commitment?
How do we force the machine to produce proof of what
it’s about to cast on the voter’s behalf?

ballot commitment

What is the commitment?
How do we force the machine to produce proof of what
it’s about to cast on the voter’s behalf?
Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot

ballot commitment

What is the commitment?
How do we force the machine to produce proof of what
it’s about to cast on the voter’s behalf?
Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot
How do you test the commitment?

ballot commitment

What is the commitment?
How do we force the machine to produce proof of what
it’s about to cast on the voter’s behalf?
Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot
How do you test the commitment?
Decrypt it.
But decryption requires the private key for tabulating the
whole election!

ballot commitment

Elgamal reminder
Two ways to decrypt:

g	
 group generator
M	
 plaintext (message)
r	
 random (chosen at encryption time)
a	
 (private) decryption key
	
 (public) encryption keyga

E(ga,r,M) = hgr,(ga)rMi

D(gr,garM,a) =
garM
(gr)a

D(gr,garM,r) =
garM
(ga)r

= M

challenging the machine

When challenged, the machine must reveal r
We can then decrypt this ballot (only) and see if it’s
what we expected to see
In Benaloh, the encrypted ballot is on paper
An irrevocable output medium
decrypting requires additional equipment
VoteBox happens to have its own irrevocable
publishing system
One that doesn’t run out of ink or paper
Auditorium.

challenging the machine

polling place

polling place

voter

polling place

voter

commit
ballot

polling place

voter

commit
ballot

cast
ballot

polling place

polling place

challenger

polling place

challengerobservers

polling place

challengerobservers

commit
ballot

polling place

challengerobservers

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

I
N

T
E

R
N

E
T

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

internet
device

challenge
verification

results

commit
ballot

challenge
response

polling place

challengerobservers

“data
 diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

internet
device

challenge
verification

results

ALICE

commit
ballot

challenge
response

Challenges in Auditorium

Challenges in Auditorium
When challenged,

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even
given r

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even
given r
If we are careful, we can send challenges offsite

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even
given r
If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even
given r
If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge
Trusted by the challenger!

Ballot challenges:

Ballot challenges:
cast-as-intended verification

Ballot challenges:
cast-as-intended verification
preserving privacy

Ballot challenges:
cast-as-intended verification
preserving privacy
without artificial test conditions.

UI.

skip

pre-rendered user interfaces

pre-rendered user interfaces
very restricted UI functions

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?
windowing system; widgets; fonts & text rendering

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?
windowing system; widgets; fonts & text rendering
result

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?
windowing system; widgets; fonts & text rendering
result
less code to inspect, certify, and trust

pre-rendered user interfaces
very restricted UI functions
next_event() → keyboard or (x, y) input

blit(bitmap, x, y)

what’s not here?
windowing system; widgets; fonts & text rendering
result
less code to inspect, certify, and trust
inspiration: Pvote
pioneering work on PRUI in e-voting
[Yee, EVT ’06 & ’07]

GUI tool for creating pre-rendered ballots
this is where the complexity went

VoteBox ballot creator

Not in the TCB
we don’t need to trust this
software
sufficient to verify that the
output ballot is correct
Flexibility
New ballot designs do not
require changes to VoteBox
—only the ballot creator

HCI research

HCI research
VoteBox is a platform for human
factors research & experimentation
VoteBox’s ballot designed jointly with
Rice CHIL
special VoteBox-HF build includes
extensive instrumentation for HCI work

HCI research
VoteBox is a platform for human
factors research & experimentation
VoteBox’s ballot designed jointly with
Rice CHIL
special VoteBox-HF build includes
extensive instrumentation for HCI work
Questions answered include:
“Do users prefer DREs?”
“Do DREs improve performance?”
“Do voters notice if DREs malfunction?”
Software engineering implications
Instrumentation is “evil” code from a
security standpoint
Compile-time processing to exclude all
HCI code from normal VoteBox builds

Extensions.

skip

internet voting
from home is
a bad idea

remote voting
can be
a good idea

“postal voting”

“postal voting”
ALICE

BOB

CHUCKX

“postal voting”
ALICE

BOB

CHUCKX

ALICE

BOB

CHUCKX

“postal voting”
ALICE

BOB

CHUCKX

ALICE

BOB

CHUCKX

“postal voting”
ALICE

BOB

CHUCKX

ALICE

BOB

CHUCKX

VOTER

SIGNATURE

Daniel R. Sandler

XDRSandler

“postal voting”
ALICE

BOB

CHUCKX

ALICE

BOB

CHUCKX

VOTER

SIGNATURE

Daniel R. Sandler

XDRSandler

we can do this with VoteBox

	 Conventional:	 postal system
	 Replace with:	 Auditorium network

	 Conventional:	 sealed envelopes
	 Replace with:	 encryption

=

ALICE

BOB

CHUCKX

=

ALICE

BOB

CHUCKX

=>

Fast
Ballot types from home precinct
Cast ballots back to home precinct
Robust
Post and networks both lossy
…but networks can retransmit

More secure
Choices cannot be observed while in transit
Crypto protects vote secrecy (even from officials)

Benefits of the networked
remote polling place

3. Conclusion

why?

lots of research on
individual pieces
of the e-voting problem

VoteBox integrates
these techniques in a
single system.

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

VoteBox integrates
these techniques in a
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

VoteBox integrates
these techniques in a
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

VoteBox integrates
these techniques in a
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

Other ingredients
PRUI; HCI instrumentation

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

VoteBox integrates
these techniques in a
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

Other ingredients
PRUI; HCI instrumentation

Techniques suitable for integration with today’s systems

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

http://blog.wired.com/27bstroke6/2009/01/diebold-audit-l.html

http://blog.wired.com/27bstroke6/2009/01/diebold-audit-l.html
http://blog.wired.com/27bstroke6/2009/03/ca-report-finds.html

platform
VoteBox is open-source
votebox.cs.rice.edu & code.google.com/p/votebox
suitable for further research, HCI experiments, class
projects, security analysis

thanks
co-authors
Scott Crosby, Kyle Derr, Daniel Sandler,
Ted Torous

contributors to VoteBox
Emily Fortuna, George Mastrogiannis,
Kevin Montrose, Corey Shaw

CHIL
Mike Byrne, Sarah Everett, Kristen Greene

NSF/ACCURATE

OK

tap

commitments
& challenge
responses

challenge
verification

results

uploader

data
diode

internet
device

polling place challe
ce

internet

U

Alice

Bob

V O T E B O X

VoteBox is an ACCURATE research project
exploring designs for new e-voting systems
that are trustworthy, reliable, and usable.

voters enjoy a
familiar and
interactive

e-voting user
experience

auditors can use
these logs to confirm

the validity and
integrity of ballots

VoteBox records secure,
tamper-evident logs with

redundancy to survive failures
and accidental deletion

POWER ON

POLLS OPEN

BALLOT CAST

BALLOT CAST

BALLOT CAST

anyone may challenge

a VoteBox to produce
verifiable proof of
correct behavior

(with the assistance of
a third-party proof

verifier of his choice)

ALICE

CRYPTOGRAPHIC PROOFS

RESULTS

?

ONE WAY

DECRYPTING
VERIFYING

on the web: accurate-voting.org & votebox.cs.rice.edu

NSF “highlights” graphic, 2009

Alice

Bob

E – V O T E

missing or
incorrect use of

cryptography

poor software
engineering practices

voting
machine
viruses

possible
malfunctions
can destroy

or reveal
ballots

Alice

Bob

comprehensive audits
in California and Ohio

ACCURATE center researchers have participated in studies finding
serious flaws in current commercial DRE voting systems that make them
vulnerable to malfunctions or deliberate manipulation by attackers.

electronic voting in peril
NSF “highlights” graphic, 2009

(assorted backup slides)

Beyond.

Beyond VoteBox
Other systems need assurance, auditability,
transparency
Future directions
email (auditability, document retention)
web 2.0 publishing (reliability, openness)
collaborative tools (event ordering, change tracking)
gaming (ordering, cheat resistance & audit)

email
entangled mailboxes
apply the tamper-evidence and timeline properties of
auditorium to email records that must be highly
auditable and recoverable
applications
Sarbanes-Oxley compliance
patents/notarization
Presidential records

status: planning

micropublishing
rapid short messaging
e.g. Twitter, Facebook
opt-in/social subscription
current systems are
centralized, isolated, and
limited
research opportunity
distributed, secure
micropublishing
Auditorium-style timeline
entanglement
scaling to millions of users (data from Twitter, collected 2008)

continued…

micropublishing (2)
FETHR
micropublishing API
updates pushed to
subscribers via HTTP POST
entanglement between
publishers
gossip to assist in message
distribution
prototype implementation:
Birdfeeder (brdfdr.com)

status: in progress; submitted
(IPTPS)

FETHR address:
http://example.com/alice

alice

FETHR address:
http://another.example.net/bob

bob

POST /bob/subscribe
id=http://example.com/alice

GET /bob/profile

(a)

alice

chuck

diane

bob

POST /alice/push

POST /chuck/push

POST /diane/push

POST /alice/push

POST /diane/push

(b)

bob

?

(c)

collaborative tools
timeline entanglement to represent sequence of
edits or actions
ordering of events corresponds neatly to causality in
groupware
status: prototyped

networked games
Auditorium-style communication for participants
gossip for decentralization, reliability
hash chains forward & backward (move commitment,
history authentication)
secure logs for post-facto audit of suspected cheating

Fancy Cryptography

Violation of encryption
semantics?

M1 M2 E(M1)�E(M2) = E(M1M2)If I know and and
then I can find other messages where
I know their encryption!

Solution: Padding
Optimal Asymmetric Encryption Padding (OAEP) -

Belare and Rogaway (1995)

m - message (plaintext)

r - random number

G, H - cryptographic hash
functions

X, Y - the message that gets
encrypted

Cool trick: reencryption

E(M)�E(0) = E(M)⇤
Anybody can “reencrypt” a message.

(New random number introduced from E(0).)

Reencryption mixnets
Permutations , where output is reencrypted.Pi

P0 P1 P2

Each mix permutes/reencrypts.
Must prove output corresponds to input.

Non-solution: reveal the mix
Publish the random numbers and the permutation.

P0

Eliminates benefit of randomization.

Randomized partial checking
Effective across larger mixes.

P0

(Jakobsson, Jules, Rivest ’02)

P1 P2

Say we’re mixing 1 million ballots, each mix reveals 1%. After five
mixes, 99.99% chance that all ballots reencrypted at least once.

Zero-knowledge proofs (ZKP)
want to prove you know something
while revealing nothing
generalized format
prover: commit to something (e.g., reencryption mix
output)
verifier: challenge the prover
prover: respond to the challenge

Example: Hamiltonian paths
Prover: “I know a HP over
graph G.” Compute graph
isomorphism H. Publish G,
H.
Verifier: Coin toss. Heads:
tell me HP over H. Tails: tell
me isomorphism G to H.

(Repeat N times.)

If prover doesn’t know HP,
verifier catches with high
probability.

Non-interactive ZK proofs
Prover: Precompute N
isomorphisms (H1 to HN) and
hash them. Hash function
yields coin tosses for virtual
challenger. Then output the
results.

(Assumes good hash
functions.)

This is an example of the
Fiat-Shamir heuristic (1986).

NIZK variant for mixes
Hash the output of the permutation/reencryption. Use
those bits to select which edges get revealed.

P0

Say we’re mixing 1 million ballots, each mix reveals
1%. After five mixes, 99.99% chance that all ballots
reencrypted at least once.

P1 P2

Evil machine: E(bignum)?
Must prove ciphertext corresponds to well-formed
plaintext. (Example, prove counters are zero or one.)

We need another ZK tool: Chaum-Pedersen proofs.

Prover knows:
Wants to prove that these two tuples share x

(g,gx),(h,hx)

Chaum-Pedersen proofs
(1992)
Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

w 2 Z⇤
p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

P choses fake c, R: then .

A(gx)c

A = g

R(gxc)�1

Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

P choses fake c, R: then .

Observer can compute ...A(gx)c

A = g

R(gxc)�1

Goal: demonstrate
P: choose random , compute
 Send (A,B) to V
V: pick a random number c (challenge), send to P
P: compute
 send R to V
V: Compute

Fake C-P proofs?
w 2 Z⇤

p (A = gw,B = hw)

R = w+ xc

A(gx)c = g

w

g

xc

= g

w+xc

= g

R

B(hx)c = h

w

h

xc

= h

w+xc

= h

R

(g,gx),(h,hx)

P choses fake c, R: then .

ZK protocols only work when “live” (or use Fiat-
Shamir heuristic for non-interactive)

Observer can compute ...A(gx)c

A = g

R(gxc)�1

C-P for vote testing
Can I prove a vote is zero or one? First, how about
proving it’s zero using C-P.

Want to verify for a specific value of v?
Do C-P protocol where becomes

We could do this for any value of v

Challenge is to do v = 0 and v = 1 at the same time.

(g,gx),(h,hx)

(g,gr),
✓

ga,
gargv

gv

◆

hgr,gargvi

Cramer-Damgård-
Schoenmakers (1996)
Can run two Chaum-Pedersen (or any two ZK proofs
like this) simultaneously, one “real” and one “simulated”.

First, fake a proof (e.g., for v = 1) in advance.

Then, announce the first message for both protocols.
Challenger sends c, prover announced a split
where , then executes both ZK protocols.

Verifier cannot tell which one was real vs. simulated, but
knows that one of them was real.

c0,c1

c0 + c1 = c

Crypto summary
At the end of the day, any election observer can now:
- verify every single ballot for being “well-formed”

(valid Elgamal tuple, encrypted zero-or-one, etc.)
- add together all the ballots (homomorphically)
- verify a proof of the tally (Chaum-Pedersen again)

(only the election authority can generate this)

But we have no idea if the original ciphertext
corresponded to the intent of the voter (versus evil
machine flipping votes).

